Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
我们提出了一种叫做SkullEngine的多级粗内CNN框架,可通过协作,集成和可扩展的JSD模型和三个分段和地标检测细化模型进行高分辨率分割和大规模地标检测。我们在临床数据集中评估了由170 CBCT / CT图像组成的临床数据集,用于分割2骨骼(Midface和Mabless)的任务,并在骨骼,牙齿和软组织上检测175个临床普通的地标。
translated by 谷歌翻译
精确分割牙齿并识别牙科网格模型上的相应解剖标签在计算机辅助性正畸治疗中是必不可少的。手动执行这两个任务是耗时,繁琐的,更重要的是,由于患者牙齿的异常和大规模差异,高度依赖于矫正者的经验。一些基于机器学习的方法已经设计和应用于正畸场,以自动分割牙科网格(例如,口腔扫描)。相比之下,牙齿地标定位的研究数量仍然有限。本文提出了一种基于网格深度学习(称为TS-MDL)的两级框架,用于联合牙齿标签和原始内部扫描的地标识别。我们的TS-MDL首先采用端到端\ EMPH {i} MeshsegNet方法(即,现有网格孔的变体,具有改进的精度和效率),以在下采样扫描上标记每个牙齿。由分割输出引导,我们的TS-MDL进一步选择原始网格上的每个牙齿的感兴趣区域(ROI),以构造开头的光重变量(即PINTNET-REG),用于回归相应的地标热插块。我们的TS-MDL在实际的数据集上进行了评估,显示了有希望的细分和本地化性能。具体而言,TS-MDL的第一阶段中的\ EMPH {i} Meshsegnet达到了0.964 \ PM0.054 $ 0.964 \ PM0.054 $的平均骰子相似度系数(DSC),显着优于原始的Meshsegnet。在第二阶段,PointNet-Reg实现了0.597 \ PM0.761 \,预测和地面真理之间的平均绝对误差(MAE),以66美元的地标,与地标检测的其他网络相比,比较优越。所有这些结果表明我们在临床实践中的TS-MDL潜在使用。
translated by 谷歌翻译
In the field of cross-modal retrieval, single encoder models tend to perform better than dual encoder models, but they suffer from high latency and low throughput. In this paper, we present a dual encoder model called BagFormer that utilizes a cross modal interaction mechanism to improve recall performance without sacrificing latency and throughput. BagFormer achieves this through the use of bag-wise interactions, which allow for the transformation of text to a more appropriate granularity and the incorporation of entity knowledge into the model. Our experiments demonstrate that BagFormer is able to achieve results comparable to state-of-the-art single encoder models in cross-modal retrieval tasks, while also offering efficient training and inference with 20.72 times lower latency and 25.74 times higher throughput.
translated by 谷歌翻译
Body Mass Index (BMI), age, height and weight are important indicators of human health conditions, which can provide useful information for plenty of practical purposes, such as health care, monitoring and re-identification. Most existing methods of health indicator prediction mainly use front-view body or face images. These inputs are hard to be obtained in daily life and often lead to the lack of robustness for the models, considering their strict requirements on view and pose. In this paper, we propose to employ gait videos to predict health indicators, which are more prevalent in surveillance and home monitoring scenarios. However, the study of health indicator prediction from gait videos using deep learning was hindered due to the small amount of open-sourced data. To address this issue, we analyse the similarity and relationship between pose estimation and health indicator prediction tasks, and then propose a paradigm enabling deep learning for small health indicator datasets by pre-training on the pose estimation task. Furthermore, to better suit the health indicator prediction task, we bring forward Global-Local Aware aNd Centrosymmetric Encoder (GLANCE) module. It first extracts local and global features by progressive convolutions and then fuses multi-level features by a centrosymmetric double-path hourglass structure in two different ways. Experiments demonstrate that the proposed paradigm achieves state-of-the-art results for predicting health indicators on MoVi, and that the GLANCE module is also beneficial for pose estimation on 3DPW.
translated by 谷歌翻译
We present IMAS, a method that segments the primary objects in videos without manual annotation in training or inference. Previous methods in unsupervised video object segmentation (UVOS) have demonstrated the effectiveness of motion as either input or supervision for segmentation. However, motion signals may be uninformative or even misleading in cases such as deformable objects and objects with reflections, causing unsatisfactory segmentation. In contrast, IMAS achieves Improved UVOS with Motion-Appearance Synergy. Our method has two training stages: 1) a motion-supervised object discovery stage that deals with motion-appearance conflicts through a learnable residual pathway; 2) a refinement stage with both low- and high-level appearance supervision to correct model misconceptions learned from misleading motion cues. Additionally, we propose motion-semantic alignment as a model-agnostic annotation-free hyperparam tuning method. We demonstrate its effectiveness in tuning critical hyperparams previously tuned with human annotation or hand-crafted hyperparam-specific metrics. IMAS greatly improves the segmentation quality on several common UVOS benchmarks. For example, we surpass previous methods by 8.3% on DAVIS16 benchmark with only standard ResNet and convolutional heads. We intend to release our code for future research and applications.
translated by 谷歌翻译
Current audio-visual separation methods share a standard architecture design where an audio encoder-decoder network is fused with visual encoding features at the encoder bottleneck. This design confounds the learning of multi-modal feature encoding with robust sound decoding for audio separation. To generalize to a new instrument: one must finetune the entire visual and audio network for all musical instruments. We re-formulate visual-sound separation task and propose Instrument as Query (iQuery) with a flexible query expansion mechanism. Our approach ensures cross-modal consistency and cross-instrument disentanglement. We utilize "visually named" queries to initiate the learning of audio queries and use cross-modal attention to remove potential sound source interference at the estimated waveforms. To generalize to a new instrument or event class, drawing inspiration from the text-prompt design, we insert an additional query as an audio prompt while freezing the attention mechanism. Experimental results on three benchmarks demonstrate that our iQuery improves audio-visual sound source separation performance.
translated by 谷歌翻译
Expressing empathy is important in everyday conversations, and exploring how empathy arises is crucial in automatic response generation. Most previous approaches consider only a single factor that affects empathy. However, in practice, empathy generation and expression is a very complex and dynamic psychological process. A listener needs to find out events which cause a speaker's emotions (emotion cause extraction), project the events into some experience (knowledge extension), and express empathy in the most appropriate way (communication mechanism). To this end, we propose a novel approach, which integrates the three components - emotion cause, knowledge graph, and communication mechanism for empathetic response generation. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and show that incorporating the key components generates more informative and empathetic responses.
translated by 谷歌翻译
Learning generalizable insertion skills in a data-efficient manner has long been a challenge in the robot learning community. While the current state-of-the-art methods with reinforcement learning (RL) show promising performance in acquiring manipulation skills, the algorithms are data-hungry and hard to generalize. To overcome the issues, in this paper we present Prim-LAfD, a simple yet effective framework to learn and adapt primitive-based insertion skills from demonstrations. Prim-LAfD utilizes black-box function optimization to learn and adapt the primitive parameters leveraging prior experiences. Human demonstrations are modeled as dense rewards guiding parameter learning. We validate the effectiveness of the proposed method on eight peg-hole and connector-socket insertion tasks. The experimental results show that our proposed framework takes less than one hour to acquire the insertion skills and as few as fifteen minutes to adapt to an unseen insertion task on a physical robot.
translated by 谷歌翻译
Partial label learning (PLL) is a typical weakly supervised learning, where each sample is associated with a set of candidate labels. The basic assumption of PLL is that the ground-truth label must reside in the candidate set. However, this assumption may not be satisfied due to the unprofessional judgment of the annotators, thus limiting the practical application of PLL. In this paper, we relax this assumption and focus on a more general problem, noisy PLL, where the ground-truth label may not exist in the candidate set. To address this challenging problem, we further propose a novel framework called "Automatic Refinement Network (ARNet)". Our method consists of multiple rounds. In each round, we purify the noisy samples through two key modules, i.e., noisy sample detection and label correction. To guarantee the performance of these modules, we start with warm-up training and automatically select the appropriate correction epoch. Meanwhile, we exploit data augmentation to further reduce prediction errors in ARNet. Through theoretical analysis, we prove that our method is able to reduce the noise level of the dataset and eventually approximate the Bayes optimal classifier. To verify the effectiveness of ARNet, we conduct experiments on multiple benchmark datasets. Experimental results demonstrate that our ARNet is superior to existing state-of-the-art approaches in noisy PLL. Our code will be made public soon.
translated by 谷歌翻译